
DJB-AtomPro FAQ
Page 1 of 12

DJB-AtomPro FAQ

David J. Brown
Created 3-15-06

Last Updated 10-10-10

Table of Contents

Integer vs. Floating Point Performance... 2

Converting Potentiometer/Analog Inputs to Semi-Log Feel 2

Using Interrupts to Detect Narrow Triggers... 4

PSIM Input to Output Voltage Conversion .. 5

MIDI Input & Output (e.g. hardware serial) ... 5

Timer A Interrupts ... 6

Timer V Interrupts ... 7

Timer W Interrupts .. 7

Serial Ouput Using s_out .. 7

Using MIDI input for RS-232 ... 8

I2COUT... 8

Miscellaneous BMIDE Nuances.. 9

Code Space Limitations .. 9

AtomPro28 Nuances... 9

BasicMicro Studio ... 10

AtomProLoader... 12

USB Adapters ... 12

DJB-AtomPro FAQ
Page 2 of 12

Integer vs. Floating Point Performance

I decided to run a test on my PSIM to verify the performance of integer vs. floating
point. I used a line of my code that displays DAC voltages on the LCD as the test
case. I need to divide by 102.3 and 10.23 so I had coded this using integers by first
multiplying and then dividing (as *10/1023 and *100/1023).

I measured the execution speed with my scope and the integer calculation took 115.6
uS.

i1 var word
i2 var word

let i1 = 8
let i2 = ((511-((i1*1023)/10))*100)/1023 ;executes in 115.6 uS

Doing this same calculation using floating point variables took 50% longer.

f1 var float
f2 var float

let f1 = 8.0
let f2 = ((511.0-((f1*1023.0)/10.0))*100.0)/1023.0 ;executes in 176 uS

However, with floating point I don't need to do the extra multiplications. Simplifying the
statement to dividing by 102.3 and 10.23 resulted in code that was only 12% slower
than using integer variables.

f1 var float
f2 var float

let f1 = 8.0
let f2 = (511.0-(f1/102.3))/10.23 ;executes in 130.0 uS

There really isn't much penalty of floating point over integer other than increased ram
storage.

Converting Potentiometer/Analog Inputs to Semi-Log Feel

These transforms adjusts the range of my input potentiometers to give a more semi-log
feel. These work well for controlling frequencies and delays where you need a fine
control at low settings.

Let y = f(x) where x represents a 10 bit value corresponding to the input of

DJB-AtomPro FAQ
Page 3 of 12

 a linear control, and where y represents a transform of that
 value which is piecewise continuous and covers the 10 bit range

The simplest conversion is a two segment transform:
 y = x/2 for x in the range of 0 to 682
 y = 2∗x – 1023 for x in the range of 683 to 1023

Sample code for the two segment transform is:

adin pin_j1,in_j1 ;get input 10 bit value (in_j1)
 if in_j1 > 681 then
 let in_j1 = 2*in_j1-1023 ;map 682-1023 to 341-1023
 else
 let in_j1 = in_j1/2 ;map 0-681 to 0-340
 endif

I have also used a three segment transform. This smooths the middle of the response
with a linear segment. This is pretty simple to implement and feels quite well for time
settings:
 y = x/2 for x in the range of 0 to 511
 y = x – 256 for x in the range of 512 to 767
 y = 2∗x – 1023 for x in the range of 768 to 1023

Sample code for the three segment transform is:

 adin pin_j1,in_j1 ;get input 10 bit value (in_j1)
 if in_j1 > 767 then
 let in_j1 = 2*in_j1-1023 ;map 768-1023 to 512-1023
 elseif in_j1 > 511
 in_j1 = in_j1-256 ;map 512-767 to 256-511
 else
 let in_j1 = in_j1/2 ;map 0-511 to 0-255
 endif

I also used a four segment transform optimized for more control at low values:
 y = x/4 for x in the range of 0 to 255
 y = x/2 – 64 for x in the range of 256 to 511
 y = x –320 for x in the range of 512 to 863
 y = 3∗x – 2048 for x in the range of 864 to 1023

Sample code for the four segment transform is:

 adin pin_j1,in_j1 ;get input 10 bit value (in_j1)
 if in_j1 > 863 then
 let in_j1 = 3*in_j1-2048 ;map 864-1023 to 546-1023
 elseif in_j1 > 511

DJB-AtomPro FAQ
Page 4 of 12

 in_j1 = in_j1-320 ;map 512-863 to 192-543
 elseif in_j1 > 255
 let in_j1 = in_j1/2-64 ;map 256-511 to 64-191
 else
 let in_j1 = in_j1/4 ;map 0-255 to 0-63
 endif

This can be simplified to a three segment transform by eliminating the second segment
and extending the range of the neighboring segments. This provides more control at
low values:
 y = x/4 for x in the range of 0 to 426
 y = x – 320 for x in the range of 427 to 863
 y = 3∗x – 2048 for x in the range of 864 to 1023

Sample code for the three segment transform with lower range is:

 adin pin_j1,in_j1 ;get input 10 bit value (in_j1)
 if in_j1 > 863 then
 let in_j1 = 3*in_j1-2048 ;map 864-1023 to 546-1023
 elseif in_j1 > 426
 in_j1 = in_j1-320 ;map 427-863 to 107-543
 else
 let in_j1 = in_j1/4 ;map 0-426 to 0-106
 endif

Using Interrupts to Detect Narrow Triggers

P8 can support edge interrupts. You have to reprogram P8 and enable IRQ1. The
default is for falling-edge interrupts.

 let pmr1 = pmr1|%00100000 ;set PMR to enable irq1 on P8

You can change this to rising-edge interrupts for a positive trigger. An active high
signal which is normally low will cause an interrupt when enabled. This can be
eliminated by clearing the pending interrupt prior to enabling interrupts. Add the next
two lines to select rising-edge interrupts:

 let iegr1 = iegr1|%00000010 ;set irq1 to rising edge
 let irr1 = irr1&%11111101 ;clear any pending interrupt

Then enable the IRQ1 interrupts:

 oninterrupt irq1int,aux_isr
 enable irq1int ;enable edge interrupts

DJB-AtomPro FAQ
Page 5 of 12

Remember to resume from your interrupt service routine.

aux_isr:
 resume

PSIM Input to Output Voltage Conversion

The PSIM inputs are 10 bits (e.g. 0 to 1023) referenced to 10 volts. The PSIM outputs
are 12 bits (e.g. 0 to 4095) referenced to 10.666 volts.

To convert an input to an output you need to multiply by 4 (10 bit to 12 bit conversion)
and multiply by 10/10.666 (reference conversion).

This equals 3.7502 which is reasonably close to 15/4 which keeps the math to integer
for maximum speed.

MIDI Input & Output (e.g. hardware serial)

The hserin and hserout commands are poorly documented. The enablehserial
command enables an interrupt-driven serial input and output subsystem. Both input
and output are supported with 128 byte circular buffers. These routines are very fast.

Sample code to initialize the subsystem for MIDI:

 enablehserial
 sethserial h31200,h8databits,hnoparity,h1stopbits

Do not set the serial transmit P15 direction to output. Doing so will cause a glitch when
the serial subsystem is initialized. This will cause one garbage character to be
transmitted. Instead, set the serial transmit P15 direction to input. (Note - setting P15
to an output in the latest BMIDE or Studio software inhibits all serial output. It must be
set to an input in order to function correctly). The enablehserial command will set the
correct direction.

Sample code to send Midi output:

 hserout [$90,64,64]

Sample code to check Midi input:

get_midi:
 hserin 0,no_midi,[midi_data] ;see if data but don’t wait

DJB-AtomPro FAQ
Page 6 of 12

 if midi_data=$fe then get_midi ;ignore active status
 let rcx_data_flg=1 ;set data returned flag
 return
no_midi:
 let rcx_data_flg=0 ;set empty flag
 return

Sample code to wait for Midi input:

wait_midi:
 hserin 0,wait_midi,[midi_data] ;wait for data
 if midi_data=$fe then wait_midi ;ignore active status
 return

There is also a way to get status of the hserial buffers. I have not validated the use of
any of these commands and they changed in Studio 2.0.0.0:

 hserstat 0,label ;clear input buffer, label not used
 hserstat 1,label ;clear output buffer, label not used
 hserstat 2,label ;clear both buffers, label not used
 hserstat 3,label ;goto label if data is in input buffer
 hserstat 4,label ;goto label if no data is in input buffer
 hserstat 5,label ;goto label if data is in output buffer
 hserstat 6,label ;goto label if no data is in output buffer

Timer A Interrupts

Timer A has rather limited prescalar selections. The AtomPro2X uses a 16 MHz clock
that is based on a resonator, not a crystal. These times are approximate as the
resonator has a wide tolerance. This sample code will initialize Timer A for 512 uS
interrupts:

 let tma=%00010110 ;set Timer Mode Register
 ; prescalar S /32 = 500 KHz clock
 ; 256 counts = 1953 Hz for 512 uS
 ;measured at 511.25 uS
 oninterrupt timeraint, tmr_a_isr
 enable timeraint ;enable timer interrupt

Remember to resume from your interrupt service routine.

tmr_a_isr:
 resume

DJB-AtomPro FAQ
Page 7 of 12

Timer V Interrupts

The oninterrupt timervint command does not function in releases prior to BMIDE
8.0.1.7. It is functional in BMIDE 8.0.1.7 and Studio. The AtomPro2X uses a 16 MHz
clock so this is my test code to generate 1 mS interrupts:

 let tcrv0=%00001011 ;set Timer Control Registers
 ;clear on compare match A
 let tcrv1=%00000001 ;prescalar S /128 = 125 KHz clock
 let tcora=125 ;count to 125 for 1 mS
 ;124 measured 998 uS on system
 oninterrupt timervint_cmea, tmr_v_isr
 enable timervint_cmea ;this command generates errors

Remember to resume from your interrupt service routine.

tmr_v_isr:
 resume

Timer W Interrupts

I generally use Timer W for interrupts. It has the most flexibility. The AtomPro2X uses
a 16 MHz clock so this sample code will generate 1 mS interrupts:

 let tmrw=%10001000 ;set Timer Mode Register to enable
 let tcrw=%10110000 ;set Timer Control Register
 ;clear on compare match A
 ;16 MHz clock /8 prescalar S = 2 MHz
 let gra=2000 ;2 MHz / 2000 = 1 mS
 ;2003 measured more accurate
 oninterrupt timerwint_imiea, tm_isr
 enable timerwint_imiea ;enable timer interrupt

Remember to resume from your interrupt service routine.

tm_isr:
 resume

Serial Ouput Using s_out

DJB-AtomPro FAQ
Page 8 of 12

The serial programming port may be used as an additional serial input or output pin.
You have to use the serout command which requires interrupts be disabled for correct
timing. The s_out signal is connected to pin 2 of the RS-232 connector. The internal
circuitry is designed for +/- 5 volts levels to be compatible with RS-232 levels. The -5
volts is derived from RS-232 data on pin 3. With no RS-232 cable connected, the
s_out pin is not referenced to ground. Adding a 2K resistor between pin 2 (s_out) and
pin 5 (gnd) on the RS-232 connector will provide a ground reference. There is no
current specification on this pin so I was unable to validate the minimum resistor value.
2K allows reasonable signal integrity at 57,600 baud. S_out can be used for software
serial communications with the following command:

 serout s_out,i57600,[data]

I have not validated software serial input on s_in. I have also been unable to get s_in
to function as a general digital input pin.

Using MIDI input for RS-232

I needed a way to send RS-232 data to the AtomPro2X from my computer. I wanted to
use interrupts so I did not use s_in. I made an adapter cable that would interface RS-
232 from my computer to the MIDI input. This allows me to use the hserial system for
interrupt input. Remember to modify the sethserial command for the correct baud rate.

The adapter cable is made to convert +12 volts (RS-232 levels on my computer) to 5
mA current loop. Wire up the RS-232 cable adapter as follows:

1. Wire the DB-9 pin 3 to 1.5K resistor to a diode to MIDI-In pin 4 (the cathode end
connects to MIDI-In pin 4)

2. Wire the DB-9 pin 5 to MIDI-In pin 5 (ground)
3. Wire the DB-9 pin 7 to DB9 pin 8 (flow control loopback)
4. Wire the DB-9 pin 1 to DB-9 pin 4 and pin 6 (status loopback)

I2COUT

For BMIDE, the command syntax is:
 I2cout datapin,clockpin,{ErrLabel},Control,{Address},[data … data]

I have found some peculiarities with this command. If an address is not specified, there
will be 1 start bit and the first data byte (shifted left 1 bit) will be used for the address
(the control byte is not used). If an address is specified, there will be a repeated start
(e.g. 2 start bits) and the control byte will be used for the address. The address (second
byte) will be used as the first byte of data.

 i2cout p6,p7,i2cerr,($23<<1),$14,["h"] ;8 bit adr=$23, two start bits

DJB-AtomPro FAQ
Page 9 of 12

 i2cout p6,p7,i2cerr,($23<<1),$14,["hello"] ;8 bit adr=$23, two start bits
 i2cout p6,p7,i2cerr,($23<<1),["h"] ;8 bit adr=$34 (1/2 of "h"), one start bit
 i2cout p6,p7,i2cerr,($23<<1),["hello"] ;8 bit adr=$34 (1/2 of "h"), one start bit

Use this command format to send a single byte of data:
 i2cout p6,p7,i2cerr,($adr<<1),[($adr<<1),"h"] ;duplicate address in data field

Use this command format to send multiple bytes of data:
 i2cout p6,p7,i2cerr,($adr<<1),[($adr<<1),"hello"] ;duplicate address in data field

This has been corrected in Studio. See the Studio section for correct syntax.

Miscellaneous BMIDE Nuances

1. Bytetable lengths must be an even number of bytes. If the length is odd the
compiler will add an extra byte.

2. | (vertical pipe) will continue a long command to the next line as in this example:

p_len bytetable off_0,off_1,off_2,off_3,off_4,off_5,off_6,off_7,|

off_8,off_9,off_A,off_B,off_C,off_D,off_E,off_F

3. The include command does not function. I have tried a variety of alternatives,
none successful.

Code Space Limitations

1. One of my large programs started to get near the 32K limit. I found that I got a
verify error at address $7C00. I can only assume that there is really only 31,744
bytes of code space and the last 1,024 bytes are reserved. BMIDE indicates free
space based on a total code size of 32,768 bytes.

AtomPro28 Nuances

1. The AtomPro28 contains a Power-On-Reset chip that will be active low ~360 mS
at power-on. Unfortunately, it also drives the reset line active high so current
limiting is required if this signal is grounded through a switch. A series resistor in
the range of 22R~47R work well.

2. The additional four I/O pins have different numbers depending on whether they

are analog inputs or digital (Note: the pin numbers changed in BMIDE 8.0.1.7)

DJB-AtomPro FAQ
Page 10 of 12

For digital inputs/outputs, the additional pins are:

Pin No.
Digital I/O

BMIDE 8.0.1.0 and previous
Digital I/O

BMIDE 8.0.1.7 & Studio
13 P16 (e.g. High P16) (not verified)
14 P17 (not verified)
15 P18 (not verified)
16 P19 (not verified)

For analog inputs, the additional pins are:

Pin No.
Analog in

BMIDE 8.0.1.0 & previous
Analog in

BMIDE 8.0.1.7 & Studio
13 / AN7 P19 (e.g. Adin P19,var) P16
14 / AN6 P18 P17
15 / AN5 P17 P19
16 / AN4 P16 P18

Note that the analog pin designations in BMIDE 8.0.1.7 now almost match the
datasheet and the digital pin designations (AN5 and AN6 are swapped). There
must be at least one analog input enabled at all times.

Note that if you force the BMIDE setting to AtomPro24, you cannot use P16-19
as digital inputs/outputs. You can however use the additional pins as analog
inputs by using the pin designators P4-P7 in the Adin command (e.g. Adin
P7,var will read pin 13). (Note: this may also have changed in BMIDE 8.0.1.7.)

3. BMIDE must be set to Auto or AtomPro28 to use P16-19.

BasicMicro Studio

BMIDE 8.0.1.7 has been superseded by Basic Micro Studio which supports all products
and runs on Windows XP or later. The current release as of this document was
2.0.0.0.

The fastmsbpre (e.g. 4) function for shiftout was fixed in Studio 1.0.0.25. Releases
previous to this will not function correctly.

A global enable (e.g. without any arguments) is required to enable interrupts. The
sethserial1 command will also enable global interrupts.

BasicMicro changed both the i2cout and the i2cin command syntax in Studio and they
behave much more intuitive. In addition, these commands now hang if there was no

DJB-AtomPro FAQ
Page 11 of 12

I2C hardware present (they used to fail and continue). You now need to use the error
label for them to fail and continue.

The syntax for each command is now identical:
 I2cin i2c_data,i2c_clk,control,[data]
 I2cout i2c_data,i2c_clk,control,[data]

This means the i2cin command no longer sends an address. You must use an
i2cout command to send the address followed by the i2cin command to read the
data.

For example, the BMIDE command

i2cin p6,p7,($4c<<1),$00,[step_max,step_max]

needs to be modified for Studio to

i2cout p6,p7,($4c<<1),[$00]
i2cin p6,p7,($4c<<1),[step_max,step_max]

For example, the BMIDE command
 i2cout p6,p7,i2cerr,($adr<<1),[($adr<<1),"h"]

needs to be modified to
 i2cout p6,p7,i2cerr,($adr<<1),[“h”]

BasicMicro changed the hserial command syntax in Studio 2.0.0.0.

The enablehserial and enablehserial2 commands are no longer needed.

The command sethserial changed to sethserial1 (and sethserial2 which is not
used in the AtomPro2X)

All sethserial arguments except for the bitrate argument are now optional.

The hserin command syntax changed to: hserin {uart,}{tlabel,timeout,}[...]
Since the AtomPro2X has only one serial port, {uart,} may be omitted. However,
tlabel and timeout have to be swapped to allow for the optional argument.

The hserout syntax changed to: hserout {uart,}[...]
Since the AtomPro2X has only one serial port, {uart,} may be omitted.

The hserstat syntax changed and will be documented in the next manual
release.

The hserinnext argument values changed.

1 = get byte from uart 1 or wait until there is one.
2 = get byte from uart 2 or wait until there is one.

DJB-AtomPro FAQ
Page 12 of 12

0x81 = get byte from uart 1 or return -1 if it's empty
0x82 = get byte from uart 2 or return -1 if it's empty

AtomProLoader

AtomProLoader.exe is a lightweight programmer for the AtomPro24/28 on Windows XP
or later. It will program using .bin files generated by BasicMicro Studio (or IDE).

It may be downloaded (as of this document) from:
http://downloads.basicmicro.com/downloads/software/BasicMicroAtomProLoader.zip

A folder for each program must be created one level below AtomProLoader.exe. Each
folder contains three files:

• filename.bin
• filename.bmp
• project.ini

Project.ini contains information for AtomProLoader and must be modified for each
program. It is a simple ascii file that contains several lines of information.

The italicized lines are specific for each program.

none flag to enable a test setup internal terminal window
DTR defines the programming interface
25 reset time in mS.
ATOMPRO28 defines the processor to be programmed
dropdown name name that appears in the program interface dropdown box
filename.bmp small bitmap image that appears in the program interface

(4:3 aspect ratio - I use 244x188 resolution)
filename.bin name of the program
0 baudrate for the internal terminal window (set to 0 since the

internal terminal window is disabled)
comment line1
 …
comment lineN

comments that appear in the program interface
I document the inputs and outputs of the program

USB Adapters

The AtomPro processor programs through an on-chip RS-232 port. Some USB to
Serial adapters are not compatible with the AtomPro processors. I believe adapters
that use the Prolific PL-2303 chipset are compatible.

• The IOGEAR GUC232A adapter is compatible using Windows XP.
• The Aluratek AUS100 adapter is not compatible with the AtomPro processor.

